TURBOdesign Pumps & Fans
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Pumps & Fans packages
TURBOdesign Compressors & Turbines
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Compressors and Turbines packages...
TURBOdesign Optima
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
TURBOdesign Optima is our automatic optimization package
3D Blade Design
Our turbomachinery design toolkits include one on 3D blade design...
Meanline Design
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Volute/Scroll Geometries
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Multi-Objective Optimization
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Compressors
Test
Fans and Blowers
Test
Pumps and Hydraulic Turbines
Test
High Speed Turbines
Test
Academia
Test
Design Consultancy
Test
Research and Development
Test
Training
Blog
Catch up with the very latest and useful articles
Case Studies
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Consultancy Summaries
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Publication
Browse the latest and previous editions of our publications library
On-Demand Webinar Library
Playback our webinars
White Paper
Browse our white paper library.
In this paper, we explore the redesign of a transonic compressor using the 3D inverse design method. In the inverse design approach, the pressure loading, blade thickness distribution and stacking axis are specified and the camber surface is calculated accordingly.
The design of transonic and supersonic axial compressors strongly relies on the ability to control the shock strength, location and structure. The use of an inverse design method enables the designer to act directly on the aerodynamic parameters, like the blade loading and provides an efficient tool to control the shock wave and its interaction with the secondary flows and the tip clearance vortex.
In this process, the blade loading distribution is controlled in a parametric way. The impact of the design parameters used to control the blade loading on the rotor performance is explored using a systematic approach. CFD analysis is performed in order to assess the effect of the design modifications on the aerodynamic flow field and on the design and off-design performance of the rotor.
The following performance parameters are analyzed:
The characteristic curves are reported in this report and the operating range has increased: the rotor is characterized by a higher choke margin and better ‘performance trend’, at all the rotational speeds. As expected, the peak efficiency value has dropped.
The operating condition at 95% of the design speed is the one that benefits most from the design modification, since it is characterized by the widest improvement in operating range at the lowest cost in peak efficiency (around 0.2%).
As a result, it is possible to develop some design guidelines, which can be exploited for similar design applications.
Mehrdad Zangeneh is Founder and Managing Director of Advanced Design Technology and professor of Thermofluids at University College London.
View All ArticlesIn another article, based on one of ADT’s technical papers that was presented at the European Turbomachinery Conference [1], we cover the baseline...
Share This Post