Parametric Design of a Francis Turbine Runner by Means of a Three-Dimensional Inverse Design Method

The present paper describes the parametric design of a Francis turbine runner. The runner geometry is parameterized by means of a 3D inverse design method, while CFD analyses were performed to assess the hydrodymanic and suction performance of different design configurations that were investigated.

An initial runner design was first generated and used as baseline for parametric study. The effects of several design parameter, namely stacking condition and blade loading was then investigated in order to determine their effect on the suction performance. The use of blade parameterization using the inverse method lead to a major advantage for design of Francis turbine runners, as the three-dimensional blade shape is describe by parameters that closely related to the flow field namely blade loading and stacking condition that have a direct impact on the hydrodynamics of the flow field.



Fig. 1. Baseline Design 3D geometry - 3D View of computational mesh.


On the basis of this study, an optimum configuration was designed which results in a cavitation free flow in the runner, while maintaining a high level of hydraulic efficiency. The paper highlights design guidelines for application of inverse design method to Francis turbine runners. The design guidelines have a general validity and can be used for similar design applications since they are based on flow field analyses and on hydrodynamic design parameters.

Download the paper

Book a LIVE demo on the design of a turbomachinery application of your choice

Our demo is tailored to your specific application and design challenges

Book a Demonstration

Mehrdad Zangeneh

Mehrdad Zangeneh is Founder and Managing Director of Advanced Design Technology and professor of Thermofluids at University College London.

View All Articles


Discover the Role of the 3D Inverse Design Method in Turbomachinery Shape Optimization

Turbomachinery flow is dominated by complicated three-dimensional viscous effect. Recent developments in experimental and computational techniques...

Using TURBOdesign Suite to Optimize the Efficiency and Cavitation of Franklin Electric’s High Speed Pumps

Franklin Electric is a global leader in the manufacturing and distribution of products and systems focused on the movement and management of water...

ADT will be part of the IMECE® 2021 Conference

Prof. Mehrdad Zangeneh will be part of the Track Plenary Speakers at the IMECE® on November, 2nd at 12:35pm. ASME's International Mechanical...