Optimization of a pump-turbine runner

Pumped hydro energy storage (PHES) is currently the only proven large-scale (>100 MW) energy storage technology. The benefits of PHES on electrical system operations are well documented in textbooks and journals.

The flexible generation of PHES can provide upregulation and downregulation in power systems. Furthermore, the quick start capabilities of PHES make it suitable for black starts and for the provision of spinning and standing reserves. PHES was previously developed in many countries, such as Europe, the United States, and Japan to facilitate the integration of large base load generation. Interest in this technology has recently been renewed because of the increase in variable renewable generation, such as wind power. Thus, many new PHES stations are currently being designed and built in China.


The pump-turbine installed in PHES stations usually takes only one runner functioning as pump and turbine and should be effectively operated during water pumping and electricity generation. Therefore, pump and turbine efficiencies should be guaranteed for the runner. Furthermore, the stability and cavitation performances for both operating conditions have to be improved. Given that the targets for the two operations affect each other and are sometimes
conflicting, designing a pump-turbine runner with high performance in both operation modes is difficult.

Frequent changes between the pump and turbine operations pose significant challenges in the design of pump-turbine runners with high efficiency and stability. Download our publication 'Optimization design of a reversible pump-turbine runner with high efficiency and stability'. The publication explores the challenges and how a multiobjective optimization design system, including a 3D inverse design, computational fluid dynamics, the design of the experiment, response surface methodology, and multiobjective genetic algorithm, is introduced and applied to the design of a middle-high-head pump-turbine runner.

 

optimized pump-turbine runner.png

Fig. 1. Optimized blade shapes. 

 

This publication covers:

  • Multiobjective optimization design system
  • 3D inverse design
  • CFD analysis
  • Optimization process
  • Design, specification and parameters of a scaled pump-turbine runner
  • Optimization results
  • Model tests 

 

Download optimization of a pump-turbine publication

 

Book a LIVE demo on the design of a turbomachinery application of your choice.

Our demo is tailored to your specific application and design challenges

Book a Demonstration

Darshan Patel

Marketing Manager

View All Articles

MORE ON THIS TOPIC

Automatic Optimization of a CPU Cooling Fan

In the first part of this article on the design of a Sirocco-type CPU cooling fan stage, we showed that there is scope for improvement in the...

Design of a CPU Cooling Fan

Central Processing Unit (CPU) is a critical component of any high performance computing machine and is used for highly demanding tasks such as...

TURBOdesign Suite 2023.2: Enhancements and New Features

TURBOdesign Suite is a unique aerodynamic and hydrodynamic 3D design software package that allows users to design, analyze and optimize all types of...