TURBOdesign Pumps & Fans
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Pumps & Fans packages
TURBOdesign Compressors & Turbines
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Compressors and Turbines packages...
TURBOdesign Optima
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
TURBOdesign Optima is our automatic optimization package
3D Blade Design
Our turbomachinery design toolkits include one on 3D blade design...
Meanline Design
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Volute/Scroll Geometries
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Multi-Objective Optimization
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Compressors
Test
Fans and Blowers
Test
Pumps and Hydraulic Turbines
Test
High Speed Turbines
Test
Academia
Test
Design Consultancy
Test
Research and Development
Test
Training
Blog
Catch up with the very latest and useful articles
Case Studies
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Consultancy Summaries
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Publication
Browse the latest and previous editions of our publications library
On-Demand Webinar Library
Playback our webinars
White Paper
Browse our white paper library.
At ADT we deal with many complex turbomachinery optimizations. Here, we discuss multi-objective pump optimizations using the 3D Inverse Design method in the June 2020 edition of Pump Engineer magazine.
This is a short extract from the article. You can read it in full by clicking the button below.
Carrying out complex multi-point, multi-objective optimizations is prohibitively expensive with conventional design methods. A 3D Inverse Design approach makes this type of optimization possible by drastically reducing the computational cost.
The hydrodynamic design of rotodynamic pump stages usually involves quite complicated multi-point and multi-objective trade-offs. At the simplest level, designers have to meet the duty points of the pump, while maximizing its efficiency at the design point and improving cavitation performance. Normally what is good for cavitation performance (e.g. longer blade chords) makes skin friction loss and efficiency worse. This means there is a natural trade-off between these two requirements.
What makes the design of pumps complicated is that the pump is required to operate over a very wide range of fl ow rates; from shutdown conditions to upwards of 130% flow conditions. In addition to meeting the maximum power requirement for the motor, the pump also has to meet certain targets and requirements on the continuously rising head characteristics, on the maximum power ratio and on certain NSPH requirements.
In order to meet these complicated multi-point/multi-objective requirements, the designers must explore a large design space. Improving off-design performance and ‘flattening’ the efficiency envelope is a difficult task for any experienced pump designer. Improving the design manually requires producing many iterations via trial and error. By using 3D Inverse Design-based automatic optimization, pump stages can be rapidly designed to achieve improvements in efficiency, cavitation and shape of head curve at multiple operating points.
In the first part of this article, we showed how to perform the initial design of a radial inflow turbine rotor using the 3D inverse design method.
...
Share This Post