Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD

A new approach to optimizing a hydrodynamic design of pump diffuser is presented, based on a three-dimensional inverse design method and a Computational Fluid Dynamics (CFD) technique. The blade shape of the diffuser was designed for a specified distribution of circulation and a given meridional geometry at a low specific speed of 0.109 (non-dimensional) or 280 (m3 /min, m, rpm).

To optimize the three-dimensional pressure fields and the secondary flow behaviour inside the flow passage, the diffuser blade was more fore-loaded at the hub side as compared with the casing side. Numerical calculations, using a stage version of Dawes three-dimensional Navier-Stokes code, showed that such a loading distribution can suppress flow separation at the corner region between the hub and the blade suction surface, which was commonly observed with conventional designs having a compact bowl size (small outer diameter).

 

Capture-1.png

 

The improvements in stage efficiency were confirmed experimentally over the corresponding conventional pump stage. The application of multi-color oil-film flow visualization confirmed that the large area of the corner separation was completely eliminated in the inverse design diffuser.

Read the publication in full

Book a LIVE demo on the design of a turbomachinery application of your choice.

Our demo is tailored to your specific application and design challenges

Book a Demonstration

Darshan Patel

Marketing Manager

View All Articles

MORE ON THIS TOPIC

Discover the Role of the 3D Inverse Design Method in Turbomachinery Shape Optimization

Turbomachinery flow is dominated by complicated three-dimensional viscous effect. Recent developments in experimental and computational techniques...

Using TURBOdesign Suite to Optimize the Efficiency and Cavitation of Franklin Electric’s High Speed Pumps

Franklin Electric is a global leader in the manufacturing and distribution of products and systems focused on the movement and management of water...

ADT will be part of the IMECE® 2021 Conference

Prof. Mehrdad Zangeneh will be part of the Track Plenary Speakers at the IMECE® on November, 2nd at 12:35pm. ASME's International Mechanical...