TURBOdesign Pumps & Fans
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Pumps & Fans packages
TURBOdesign Compressors & Turbines
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Compressors and Turbines packages...
TURBOdesign Optima
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
TURBOdesign Optima is our automatic optimization package
3D Blade Design
Our turbomachinery design toolkits include one on 3D blade design...
Meanline Design
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Volute/Scroll Geometries
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Multi-Objective Optimization
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Compressors
Test
Fans and Blowers
Test
Pumps and Hydraulic Turbines
Test
High Speed Turbines
Test
Academia
Test
Design Consultancy
Test
Research and Development
Test
Training
Blog
Catch up with the very latest and useful articles
Case Studies
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Consultancy Summaries
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Publication
Browse the latest and previous editions of our publications library
On-Demand Webinar Library
Playback our webinars
White Paper
Browse our white paper library.
The customer, one of the world’s largest pump manufacturers, asked ADT to design an inducer to fit in one of their products, a multi-stage centrifugal pump.
A designer needs to consider the suction performance of the first stage to make sure that the pump can sustain low inlet
pressure without suffering with cavitation and therefore pressure drops vibration and damage. One solution to improve the suction performance is to use an inducer in front of the first stage to raise the pressure to a level where the impeller will operate normally.
First Stage
The first phase of the project was the analysis of the existing impeller and inlet component. The analysis allowed for extracting the flow field at the operating point and validating the model used for the analysis of the inducer in the design phase.
Fig.1. Blade loading and static pressure from inviscid flow field.
Inducer Design
The design of the inducer was done using the 3D Inverse Design software, TURBOdesign1. The inlet condition was simplified (linear distribution) from the flow field data extracted from the analysis phase.
Conclusion
Eventually, an inducer design was created that could fit the geometrical constraints, match the impeller design and
improve the suction performance of the stage. A reduction of the NPSH3% was observed and the inducer halved the
NPSH3% of the first impeller stage at design point.
Mehrdad Zangeneh is Founder and Managing Director of Advanced Design Technology and professor of Thermofluids at University College London.
View All ArticlesIn the first part of this article, we showed how to perform the initial design of a radial inflow turbine rotor using the 3D inverse design method.
...
Share This Post