Supercritical CO2 compressor and turbine design using 3D inverse design

 

There is considerable interest in Supercritical CO2 cycles for power generation as this can be used as a compact system for low temperature energy recovery applications. However, supercritical CO2 fluid properties are highly non-ideal around the critical point. Correct modelingof the real gas effects is critical in successful modelingand design of compressor and turbines for supercritical CO2 applications.


Shroud.png

 

In the paper presented on Wednesday 28th of June at ASME TURBO EXPO in Charlotte, ADT develops a new real gas modeling approach based on a look up table that can be generated from NIST REFPRO tables.

By using this approach, the 3D inverse design method, TURBOdesign1, can be extended to design of Supercritical CO2 compressor and turbine. In the paper a centrifugal compressor stage and a radial turbine stage for 10 MW recompression SCO2 cycle are designed by using different modules in TURBOdesign Suite such as TURBOdesign Pre for meanline design, TURBOdesign1 for 3D inverse design of the blade and TURBOdesign Volute for the design of the scroll geometry. TURBOdesign1 not only computes the blade geometry for a given loading distribution. But it also generates an accurate 3D flow field. In the figure the prediction of the surface pressure at the shroud of centrifugal compressor impeller designed for SCO2 is compared with CFD prediction from ANSYS CFX. Both TURBOdesign1 and ANSYS CFX use RGP table for look up of the SCO2 properties. The close comparison in the figure confirms the accuracy of the real gas model implemented in TURBOdesign1.

Read Paper

Book a LIVE demo on the design of a turbomachinery application of your choice.

Our demo is tailored to your specific application and design challenges

Book a Demonstration

Mehrdad Zangeneh

Mehrdad Zangeneh is Founder and Managing Director of Advanced Design Technology and professor of Thermofluids at University College London.

View All Articles

MORE ON THIS TOPIC

Discover the Role of the 3D Inverse Design Method in Turbomachinery Shape Optimization

Turbomachinery flow is dominated by complicated three-dimensional viscous effect. Recent developments in experimental and computational techniques...

Using TURBOdesign Suite to Optimize the Efficiency and Cavitation of Franklin Electric’s High Speed Pumps

Franklin Electric is a global leader in the manufacturing and distribution of products and systems focused on the movement and management of water...

ADT will be part of the IMECE® 2021 Conference

Prof. Mehrdad Zangeneh will be part of the Track Plenary Speakers at the IMECE® on November, 2nd at 12:35pm. ASME's International Mechanical...