TURBOdesign Pumps & Fans
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Pumps & Fans packages
TURBOdesign Compressors & Turbines
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Compressors and Turbines packages...
TURBOdesign Optima
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
TURBOdesign Optima is our automatic optimization package
3D Blade Design
Our turbomachinery design toolkits include one on 3D blade design...
Meanline Design
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Volute/Scroll Geometries
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Multi-Objective Optimization
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Compressors
Test
Fans and Blowers
Test
Pumps and Hydraulic Turbines
Test
High Speed Turbines
Test
Academia
Test
Design Consultancy
Test
Research and Development
Test
Training
Blog
Catch up with the very latest and useful articles
Case Studies
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Consultancy Summaries
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Publication
Browse the latest and previous editions of our publications library
On-Demand Webinar Library
Playback our webinars
White Paper
Browse our white paper library.
There is considerable interest in Supercritical CO2 cycles for power generation as this can be used as a compact system for low temperature energy recovery applications. However, supercritical CO2 fluid properties are highly non-ideal around the critical point. Correct modelingof the real gas effects is critical in successful modelingand design of compressor and turbines for supercritical CO2 applications.
In the paper presented on Wednesday 28th of June at ASME TURBO EXPO in Charlotte, ADT develops a new real gas modeling approach based on a look up table that can be generated from NIST REFPRO tables.
By using this approach, the 3D inverse design method, TURBOdesign1, can be extended to design of Supercritical CO2 compressor and turbine. In the paper a centrifugal compressor stage and a radial turbine stage for 10 MW recompression SCO2 cycle are designed by using different modules in TURBOdesign Suite such as TURBOdesign Pre for meanline design, TURBOdesign1 for 3D inverse design of the blade and TURBOdesign Volute for the design of the scroll geometry. TURBOdesign1 not only computes the blade geometry for a given loading distribution. But it also generates an accurate 3D flow field. In the figure the prediction of the surface pressure at the shroud of centrifugal compressor impeller designed for SCO2 is compared with CFD prediction from ANSYS CFX. Both TURBOdesign1 and ANSYS CFX use RGP table for look up of the SCO2 properties. The close comparison in the figure confirms the accuracy of the real gas model implemented in TURBOdesign1.
Mehrdad Zangeneh is Founder and Managing Director of Advanced Design Technology and professor of Thermofluids at University College London.
View All ArticlesIn the first part of this article, we showed how to perform the initial design of a radial inflow turbine rotor using the 3D inverse design method.
...
Share This Post