ADT & Franklin Electric publication: Multi-Objective Optimization of a High Specific Speed Centrifugal Volute Pump Using a 3D Inverse Design Coupled with CFD Simulations

Centrifugal pumps constitute a dominant portion of the world production of pumps, they also consume about 10% of electrical power worldwide. Good performance and high reliability of the centrifugal pumps have been actively pursued by the pump manufacturers.

This paper presents three different multi-objective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head.


Fig. 1. Flowchart of the optimization work.


The first two optimization strategies use a 3D inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry is changed during the optimization. In the first approach Design of Experiment method is used and the efficiency computed from CFD computations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method.

The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency.


“This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with little cavitation at high flow.”


In the second approach the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the more computationally expensive solution based on 3D CFD results.

In order to compare the inverse design based optimization to the conventional optimization an equivalent optimization is carried out by parametrizing the blade angle and meridional shape. Two different approaches are used for conventional optimization one in which the blade angle at TE is not constrained and one in which blade angles are constrained. In both cases larger variation in head is obtained when compared with the inverse design approach.

Read more by downloading the publication.

Download the paper

Book a LIVE demo on the design of a turbomachinery application of your choice

Our demo is tailored to your specific application and design challenges

Book a Demonstration

Mehrdad Zangeneh

Mehrdad Zangeneh is Founder and Managing Director of Advanced Design Technology and professor of Thermofluids at University College London.

View All Articles


Case Study: Application of TURBOdesign1 by Kubota Corporation of Japan to the Development of an In-line Type Hydraulic Turbine for Micro Power Generation

With the growing concern of global warming and the need for clean power generation, small-scale hydraulic turbines, solar cells and wind power...

Consultancy Summary: Techniques to Redesign an Industrial Compressor Stage

In this consultancy summary, the stage efficiency was improved by up to 5 points with improvement in stable operating range.