TURBOdesign Pumps & Fans
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Pumps & Fans packages
TURBOdesign Compressors & Turbines
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Our Compressors and Turbines packages...
TURBOdesign Optima
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
TURBOdesign Optima is our automatic optimization package
3D Blade Design
Our turbomachinery design toolkits include one on 3D blade design...
Meanline Design
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Volute/Scroll Geometries
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Multi-Objective Optimization
TURBOdesign Suite provides tools to designers to put them in direct control of aerodynamic design to streamline every step of the design process for turbomachinery components.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Compressors
Test
Fans and Blowers
Test
Pumps and Hydraulic Turbines
Test
High Speed Turbines
Test
Academia
Test
Design Consultancy
Test
Research and Development
Test
Training
Blog
Catch up with the very latest and useful articles
Case Studies
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Consultancy Summaries
Read our success stories from companies of all sizes who are transforming the way they design turbomachinery components.
Publication
Browse the latest and previous editions of our publications library
On-Demand Webinar Library
Playback our webinars
White Paper
Browse our white paper library.
The cooling system of modern automobiles is the subject of intense reflections to maximize efficiency and reduce the energy consumption. Large fan design diameters are preferred to enhance thermal exchanges over the large surface of the radiator, whereas high rotational speeds are seeking to benefit from higher efficiency and low weight of the electrical motor that drive the fan.
This leads to reconsider the design of the blades for these conditions for which stagger angles are very high and the aerodynamic load very low. These unconventional geometries are so far little known, but represent an interesting potential in terms of design of the cooling system, which could benefit from a high permeability favorable to the heat transfer when the vehicle is moving, even at low speed.
The aim of this paper is to apply 3D inverse design method coupled with multi-objective/multi-point automatic optimization method to design a low loaded axial fan. In this approach Design of Experiment Method (DoE) is used to create a Response Surface (RSM) relating the various performance parameters to inverse design base design parameters. Multi-objective Genetic Algorithm (MOGA) is then run on the response surface to find the trade-offs between design parameters and constraints. All designs are evaluated by using unsteady 3D CFD simulation to create the Response Surface. An estimate of aeroacoustics far field noise is obtained by using an acoustic FW&H model. Some experimental results from a prototyped version are also presented to evaluate the accuracy of numerical simulations.
Two designs are selected by the optimization process with different compromises in term of multi-objectives performances, and their final qualities are assessed by a thermal simulation on a cooling module. These proposed new geometries represent a proof of concept that is analyzed for performance evaluation before further developments for the automotive application.
Share This Post