Optimization of a Pump-as-Turbine Runner

Pumps & Hydraulic Turbines September 7, 2021

At ADT we deal with many complex turbomachinery optimizations. In that vein, we discussed trade-offs in pump-as-turbine runners for the December 2019 edition of Pump Engineer Magazine.

This is a short extract from the article. You can read it in full by clicking the button below.

Restricting greenhouse gas emissions is one of the most pressing challenges facing the world today. As the basis for sustainable development is set, climate-related factors play an increasingly large role in the adaptation of the power generation and energy storage sectors.

 

pump and turbine runner

 

Pumped storage hydroelectricity is the world’s largest contributor to grid energy storage. The main driver of its success is the fact that the impellers can operate as either a pump or a turbine, depending on demand. When demand is low, the excess capacity can be used
to pump water from a low-elevation reservoir to a higher one. During peak periods, water can be released from those high-elevation areas through the same turbomachinery component, working as a turbine, to produce electric power.

Designing components for challenging turbomachinery-based schemes, like the one described above, is a complex process that includes
the exploration of trade-offs: operating requirements, such as head/power at a given volume flow rate and rpm, need to be respected in both pump and turbine mode, and cavitation needs to be minimized while efficiency is maximized to reduce pump power usage and increase energy generation in turbine mode.

Read Full Article

 

If you would like to learn more about the development of the process, you can explore more of its background by reading the papers that formed the basis of this article. They are:

Optimization Design of a Reversible Pump-turbine Runner with High Efficiency and Stability

Optimization of a Pump-as-turbine Runner using 3D Inverse Design Methodology

Book a LIVE demo on the design of a turbomachinery application of your choice.

Our demo is tailored to your specific application and design challenges

Book a Demonstration

Mehrdad Zangeneh

Mehrdad Zangeneh is Founder and Managing Director of Advanced Design Technology and professor of Thermofluids at University College London.

View All Articles

MORE ON THIS TOPIC

Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses

The present paper describes the parametric design of a mixed-flow water-jet pump. The pump impeller and diffuser geometries were parameterized by...

Consultancy Summary: Design and Optimization of a Centrifugal Pump Stage

What are the design targets? The project involves the design and optimization of a high specific speed centrifugalpump stage. The optimized stage...

What is the Optimum Blade Loading for Pumps?

Pumps account for 20% of global energy consumption, and energy is often the largest cost in the life cycle costs of a pump system. Critical to a good...